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Calculus 2c-7 Preface

Preface

In this volume I present some examples of line integrals, cf. also Calculus 2b, Functions of Several
Variables. Since my aim also has been to demonstrate some solution strategy I have as far as possible
structured the examples according to the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.
I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples
and problems at university level are often so complicated that it in general will be a good investment
also to spend some time on the first two points above in order to be absolutely certain of what to do
in a particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of A I shall either write
“and”, or a comma, and instead of V I shall write “or”. The arrows = and < are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
14th October 2007
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Calculus 2c-7 Line integrals, rectangular coordinates

1 Line integrals, rectangular coordinates

Example 1.1 Calculate in each of the following cases the given line integral, where the curve IC is
given by the parametric description

K={xeRF|x=r(t), tel}, k=2ork=3.
1) The line integral f,c ds, where
r(t) = (a(l — cost),a(t —sint)), t €10, 4n].
2) The line integral fK Vxds, where
r(t) = (a(l — cost), a(t — sint)), t €[0,4n].
3) The line integral f’Czds, where

r(t) = (t,3t%,6t%), t €[0,2].

1
4) The line integral f,c 760 ds, where
Y

r(t) = (t,3t%,6t%), t€10,2].
5) The line integral [, (x + e*), where
. T
r(t) = (cost,sint,lncost), te {0, Z} .

[Cf. Example 3.3.6.]

6) The line integral [ (x> +y* + 2%) ds, where

r(t) = (e’ cost, e’ sint, e'), t€10,2].
7) The line integral [, =2 ds, wh
) The line integral [, 5 ds, where
r(t) = 1 (' e sint,e") t € 10,u).
\/g ) ) ) B

[Cf. Example 3.3.7.]

8) The line integral [,(2* +y?)ds, where

r(t):(l_t2 2t ) teR.

14427 141¢2

9) The line integral f’C ds, where

r(t) = <2 Arcsin t,1n(1 — %),1n g) ) te [O’ %] ’
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Calculus 2c-7 Line integrals, rectangular coordinates

10) The line integral [, xe¥ ds, where

141 1
t) = | 2 Arcsin t,In(1 — t?),1 ; te |0, —|.
r(t) < resin ¢, In( ), ny t) 6{ \/5}

11) The line integral j,C ds, where

1
V14322 4 22

r(t) = (cost,2sint,e"), te[-1,1].

A Line integrals.

D First find ||r’(¢)| in each case. Then compute the line integral.

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Calculus 2c-7 Line integrals, rectangular coordinates

0051152

X

Figure 1: The plane curve K of Example 1.1.1 and Example 1.1.2 for a = 1.

I 1) Here,
r'(t) = a(sint, 1 — cost),

SO

t
I’ ()] = a\/sin2t+ (1 —cost)? = a2 —2cost = ay/4sin? 5= 2a

Then accordingly,

47
/ds:/ 2a
K 0

2) It follows from 1) that

['(£)]| = av/2(1 - cost),

.t
sin —|.
2

t 2 T
sin2‘ dt:4a/ |sinu|du:8a/ sin u du = 16a.
0 0

4m
/\/Eds = Va(l —cost) - ay/2(1 — cost) dt
K 0
4 4m
= a\/%/ |1fcost|dt:a\/%/ (1 —cost)dt = 4v2mar/a.
0 0

3) It follows from r'(t) = (1,6t,18¢2) that

I/ (£)]] = /1 + 36t2 + 324t4 = /(1 + 182)2 = 1 + 1812,

hence

2 6 6-18 ;1° 3
/zds:/ 6t3(1 4+ 18t2)dt = |—t* + —— | ==.16+18-64 =24 + 1152 = 1176.
< 0 4 6 0 2
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Calculus 2c-7 Line integrals, rectangular coordinates

Figure 2: The curve K for ¢ € [0, 15]. It is used in Example 1.1.3 and Example 1.1.4 for t € [0, 2].

4) Tt follows from 3 above that ||r/(t)|| = 1 + 18t2, so

1 214 18¢2
/ ds:/%dtzz

Figure 3: The curve K of Example 1.1.5.

5) It follows from

') - " sint
r'(t) = | —sint, cost, ———
’ " cost )’

that

.2 L2

sin“ ¢ sin” ¢ 1
I‘,t — S. 2t+COSQt+ — 1_|_ — ;
I=®l \/ " cos?t cos2t  |cost|

hence

B 1
2Y dg = t Incost dt :/
/K(x +e*)ds /0 (cost+e ) P ;

us
4

2dt = =
2
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Calculus 2c-7 Line integrals, rectangular coordinates

Figure 4: The curve K of Example 1.1.6 and — apart from e factor 1/v/3 — of Example 1.1.7.

6) It follows from
r'(t) = (e'(cost —sint), e’ (sint + cost),e'),

that
[’ ()] = €' /(cost —sint)2 + (sint + cost)2 + 1 = V3 e,
thus
/’C(x2+y2+22)ds = /2e2t (cos®t +sin®t + 1) ~V3etdt
0

2
2\/5/ egtdt:%\/g (5 —1).
0

7) If we first divide by v/3, we get by Example 1.1.6 the more nice expression [|r/()|| = ef. Then
the line integral becomes

/ds=/ etdt = e — 1.
K 0

8) We get by just computing

(1) —2t(1 + %) —2t(1 —t2) 2(1 +¢2) —2t 2t
(1+12)2 ’ (14 1¢2)2
4t 2(1 —t%) 1 5
= (- = —2t,1—
( (1+t2)2’(1+t2)2> (1+t2)2( t1-t),
hence
, 1 JIETA-EP 1 1
— 412 1 —¢2)2 = 1 2)2 — .
¥ Ol = Gy VI + = 827 = oy VAT 8P = 5
Then finally,
oo 1 2
2 2 _ 422 21 .
/}C(x +y?)ds = /700 TESEE {(1—17)* + 4%} 1+t2dt

+oo (1 +t2)2 9
- = +oo __
- | R - A g =
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Calculus 2c-7 Line integrals, rectangular coordinates

Figure 5: The curve K of Example 1.1.8, i.e. a circle except for the point (—1,0).

ALTERNATIVE. The computation above was a little elaborated. However, the line integral
is independent of the chosen parametric description, and K is a circle with the exception of
the point (—1,0), which is of no importance for the integration. Therefore, we can apply the
simpler parametric description

r(t) = (cost,sint), te]—m, |,
where

r'(t) = (—sint,cost) og |r'(t)|| = Vsin®t +cos2t = 1.

Then the line integral becomes almost trivial,

/(:E2+y2)ds:/ 12dt = 2.
K -7

Figure 6: The curve K of Example 1.1.9 and Example 1.1.10.

9) Here

r’(t):( 2 2t 1 1 > 2 (m,—t,l),

Ao 121+t 1-¢) " 1-¢p

Download free books at BookBooN.com
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Calculus 2c-7 Line integrals, rectangular coordinates

hence

2 2v/2 1 1

1 1+t t—1

The line integral is

/ds
K

1

[l -l

T+t t—1 —t],
_ AN VZ+1Y _
= an<1_%>_46m<v§_1>_2¢§mw5+n.

10) We consider the same curve as in Example 1.1.9, so we can reuse that

o= 25 =va (1t - ) te o],

www.job.oticon.dk
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Calculus 2c-7 Line integrals, rectangular coordinates

and the line integral becomes

1 1
vz 2/2 V2
/:I:eyds = /22A1rcsint-(1—tQ)-1\/;2 :4\/5/ Arcsin ¢ dt
K 0 -

I = 1 1
4\/5/ u cosudu = 4v/2[u sinu + cosul g :4\/5{1-——&———1}
0 4 V2

= d4+m1—-4V2=m—-4(V2-1).

Figure 7: The curve K of Example 1.1.11.

11) Here
r'(t) = (—sint,2cost,e'),

SO

I ()] = Vsin? t + 4cos? +€2t = /1 + 3 cos? +2 2.

The parametric description of the integrand restricted to the curve is

V14322 + 22 =/1+ 3cos?t + e2t,

so the line integral becomes easy to compute

1
/— / V14 3cos?t 4 e2tdt = / 1dt =2.
V14322 4 22 \/1+3COSQt+€2t 1
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Calculus 2c-7

Line integrals, rectangular coordinates

Example 1.2 Calculate in each of the following cases the given line integral along the given plane

curve K of the equation y =Y (z), x € I.

1) The line integral f,c 22 ds along the curve

y=Y(z)=Inz, z € [1,2V2].

1
2) The line integral [ T
Y

y=Y(z) = 2% z € 10,1].

ds along the curve

3) The line integral fIC y?ds along the curve

y=Y(z) =z, zel,2].

4) The line integral | _
SR

y=Y(z) =sinz, z €0, 7).

5) The line integral [

1
V2+y?

y =Y (x) =sinhz, z €10,2].

ds along the curve

ds along the curve

6) The line integral f,c ye®ds along the curve

y=Y(z)=¢€", z € 10,1].

A Line integrals along plane curves.

D Sketch if possible the den plane curve. Compute the weight function /14 Y’(x)? and finally
reduce the line integral to an ordinary integral.

14

12

0.8

0.6

04

0.2

0.2

05

25

Figure 8: The curve K of Example 1.2.1.

1
I 1) Tt follows from Y’(x) = — that
x

\/1+Y’(x)2:§\/1+x2,

z € [1,2V2].

14
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Calculus 2c-7 Line integrals, rectangular coordinates

Thus we get the line integral

22 1 2v2
/a:st = / x2~—2\/1+x2dfc: V1422 zdx
K 1 € 0

lw

-5

_ B%(Hz?) :5{9%—23}:%(27—2\/5):9—%\/5.

1

> team players. Swedish

Today’s job market values amb (
g culture where you’r

universities foster these qualitie
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Calculus 2c-7 Line integrals, rectangular coordinates

-0.2

Figure 9: The curve K of Example 1.2.2.

2) From Y'(z) = 2z follows that

VI+Y'(2)? = V1 +4a2,

and thus
1 1 V1 + 422 ! 1 1 /% 1
ds = - dr = —dx = - —dt
kl+4y 0o 1+4x 0o 14 (2x)? 2Jo V1+1t2

< (VTR =y (P < fue v

-0.2

Figure 10: The curve K of Example 1.2.3.

3) Here clearly \/1+Y'(2)2 =vV1+12 =2, s0

2
2
/des:/ x2x/§,ds:£[a:3]2:z\/§.
K 1 3 3

4) We get by differentiation of Y (x) = sinz that Y’ (x) = cosx, hence the weight function is

VI+Y'(2)2 =1+ cos?z = V2 —sin® z.

Download free books at BookBooN.com
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Calculus 2c-7 Line integrals, rectangular coordinates

Figure 11: The curve K of Example 1.2.4.

We finally get the line integral by insertion

/\ﬁds_/ mmdax—/ dz = 7.

Figure 12: The curve £ of Example 1.2.5.

5) When Y (z) = sinhz, then Y’(2) = cosh z, and the weight becomes

V1I+Y'(x)? = V1+cosh?z = V/2 + sinh® 2

We get finally the line integral by insertion

2
\/2+sinh29:dx:/ dr = 2.
0

1 2 1
7@:/ v
/zc\/2+y2 0 2+ sinh’z

6) When Y (z) = e® then also Y'(z) = e®, so the weight function becomes

\/1+Y’(x)2: \/1+62m.

Download free books at BookBooN.com
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Calculus 2c-7 Line integrals, rectangular coordinates

U020 0608 1 1.2
X

Figure 13: The curve K of Example 1.2.6.

We get the line integral by insertion

1 1
/ye“”ds = /ew-ez-\/1+ezzdaz=/ V1+e2r. e dy
K 0 0
1t 12 a1l 1 ;
- \/ 2 2zy _ — =2 2z 2 _ = 273
2/95:0 L esd(l+e™) =3 3{(1“” )]0 3{(1+e)2 1}'
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Calculus 2c-7 Line integrals, rectangular coordinates

Example 1.3 A space curve K is given by the parametric description
r(t) = (et,t\/i,e_t) , t€[0,Iln3].

Prove that the curve element ds is given by (e' + e~t)dt, and then find the line integral

/ 232 ds.
K

A Curve element and line integral.

D Follow the guidelines.

Figure 14: The curve K.

I The curve is clearly of class C'*°. Furthermore,
[t/ (2)]|% = (et)2 + (\/5)2 + (e—t) — et p 942 = (et +e_t)2,
and we get the curve element
ds = [[t'(t)| dt = (e" +e7") dt
with respect to the given parametric description.

Then compute the line integral,

In3 In3
/ zds = / ete? (et + e_t) dt = / (e3t + et) dt
K 0 0
In3

15 1 3 1 3
= — :—'3 3——_1:_
|:3€ +e]0 3 + 3 >

where we alternatively first can apply the change of variables u = ef, from which

3 3
1 1 32
/x3zds:/ (u? +1)du = [—u3+u] =94+3—-—-1=—.
. . 3 . 3 3
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Line integrals, rectangular coordinates

Example 1.4 A space curve K is given by the parametric description
4 . m
r(t) = t+4cost,§t—3(:ost,5smt , te {0,5}.
Find the value of the line integral

/xds.
K

A Line integral.

D First find the curve element ds = ||r/(¢)]| dt.

Figure 15: The space curve K.

I From
/ . 4 .
r'(t) = 174smt,§+3smt,5cost ,

follows that

4 2
I’ ()2 = (1—4sint)*+ <§+3sint> +25cos? t
16 25 25
= 1—8sint—|—1651n2t—|—§+8sint+9sin2 t+25cos?t = 5t 25 = 5 10,
thus
ds = |t'(t)| dt = g V10dt.
The line integral is
H 5 5 2 H 2
/ xds = / (t+4cost) - =V10dt = = V10 | = +4sint -V10( —+14
K 0 3 3 2 0 8

5m2y/10 N 20410
24 3
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Calculus 2c-7 Line integrals, rectangular coordinates

Example 1.5 A space curve K is given by the parametric description
2 ot 14
r(t)=(t"e ,§t ) tell,2].
Find the value of the line integral
1
/ S
KT+ 2x2 + 92

A Line integral.

D First calculate the weight function ||x’(¢)]|.

Figure 16: The curve K. Notice the different scales on the axes.

I We get from
r'(t) = (2t,2¢,2t°) =2 (¢, €*, )
that
/()] = 2V et + 2 + ¢6.

Then by insertion and reduction,

1 2 1
/ 7(182/ 24/ eMt 2416 dt = 2.
K Vr+2rz+y>? 1 \/t2—|—2t2 . %t4+e4t

Download free books at BookBooN.com

21



Calculus 2c-7 Line integrals, rectangular coordinates

Example 1.6 A space curve K is given by the parametric description

1
r(t) = <lnt7t2, §t4> , te[1,2).

1
Prove that the curve element ds is given by (; + 2t3> dt, and then compute the line integral

/ye ds.
K ?

A Line integral.

D Follow the guidelines.

Figure 17: The curve K.

I Clearly, r(t) is of class C* for ¢ €]1,2[. Then
/ 1 3
()= (52620), telLe]
implies that
O = 5+ a2 a0 = (L2
t2 t ’
0

1
ds = ||r'(t)|| dt = ’; + 23

1
dt = (; + 2t3> dt fort €]1,2].
We get by insertion of the parametric description,
T 2 42 2
t“ -1 1 1
/ Y gs = / T (—+2t3> dt:2/ (—2+2t2) dt
4 1 3 t t 1 t

2
1 2 1 16 2\ 31
= 2|42 =2(-2+—2+1-2) ==

Download free books at BookBooN.com

22



Calculus 2c-7 Line integrals, rectangular coordinates

Example 1.7 A space curve K is given by the parametric description

_ 2 13
r(t) = (Int, t%,2t), te [2,2}

1) Find a parametric description of the tangent to K at the point r(1).
1

2) Prove that the curve element ds is given by (; + 2t> dt.

3) Compute the value of the line integral

/ (e” +y +2z) ds.
K

A Space curve; tangent; curve element; line integral.

D Find r/(t), and apply that ds = ||r/(¢)]| dt.

Figure 18: The curve K and its tangent at (0, 1,2).

I 1) Since r(1) = (In1,12,2-1) = (0,1,2), and

1
() = (;,215,2) S =(1,2,2),
a parametric description of the tangent is given by
(w(u), y(w), 2(w) = (0,1,2) + 4 (1,2,2) = (w2u+1,2u+2), ueR,

2) Since

/ 2 1 2 1 ?
I‘(t)” :t_2+4t +4: Z+2t s

13
t for ¢ —, —| that
we get for 6{272} a

1 1
ds = ||t'(t)| dt = ’? +2t’ dt = (Z +2t> dt.

Download free books at BookBooN.com
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3) Then by insertion and computation we get the line integral

3
/(ew+\/§+22) ds:/ (elnt+\/t2+2~2t>~<%+2t> dt
K

1
2

3
2

3
2 1
/2(t+t+4t)~¥(1+2t2)dt:6/ (1 +2t%) dt
1
2

=6+4 @)3— <%) — 641 (27-1)=19.

I
W =

= [6t + 4t°]

[SIEN NI

[N)

o
Qacha?

it’s an interesting world

Get under the skin of it.

Graduate opportunities
Cheltenham | £24,945 + benefits

One of the UK’s intelligence services, GCHQ’s role is two-fold:

to gather and analyse intelligence which helps shape Britain’s
response to global events, and, to provide technical advice for the
protection of Government communication and information systems.
In doing so, our specialists — in [T, internet, engineering, languages,
information assurance, mathematics and intelligence — get well
beneath the surface of global affairs. If you thought the world was

an interesting place, you really ought to explore our world of work.

= www.careersinbritishintelligence.co.uk

T0P 100 [

s PRI

Applicants must be British citizens. GCHQ values diversity and welcomes applicants from
all sections of the community. We want our workforce to reflect the diversity of our work.

D&

Download free books at BookBooN.com

24


http://bookboon.com/count/pdf/346355/24

Calculus 2c-7 Line integrals, polar coordinates

2 Line integral, polar coordinates

Example 2.1 Compute in each of the following cases the given line integral along the plane curve IC
which is given by an equation in polar coordinates.

1) The line integral fK(x2 +y?) ds along the curve given by
o =e?, v € [0,4].

2) The line integral fIC yds along the curve given by
0=a(l—cosp), @ € [0,7].

3) The line integral f,C VY ds along the curve given by
@ = Arcsin g, 0 €[0,1].

4)

ds along the curve given by

o Y
The line integral fIC —_—
Via — 30

g:acos2<,07 pE {O,g}.

1
5) The line integral f,c pEa— ds along the curve given by
=ty

a 7r
, p e [O, —} .
cos ¢ 4

6) The line integral [ (\/xQ +y? - 1) ds along the curve given by

Q:

p=p0—1Inop, 0€1,2].
7) The line integral [(x* 4 y*)ds along the curve given by

v =0, o€ [L,2].

A Line integral in polar coordinates.

d dp\*
D First compute the weight function 4/ 02 + (d_g) possibly 4 /1 + (Q d_(p> , and then the line
¥ o
integral.
do
I 1) From — = e® = p follows that
dip
do\ 2
0%+ (_Q> =V2-0=1V2¢*,
dep
and thus

4 4 \/i
/($2+y2)d5:/ 92\/56906&0:\/5/ e3¢d¢:?(612_1).
K 0 0
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Line integrals, polar coordinates

—3‘5 -3‘0 —2‘5 2‘0 —1‘5 —\‘0

-5
h

-20

-30

40

Figure 19: The curve K of Example 2.1.1.

0.8
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0.2
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Figure 20: The curve K of Example 2.1.2.
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Calculus 2c-7 Line integrals, polar coordinates

0TG5 02 03 04 05

Figure 21: The curve K of Example 2.1.3.

d
2) From £ = a sin g, follows that

do\ 2
o’ + (ﬁ) =a*{(1 - cosp)’ + sin? ¢} =a”-2(1—cosp),

o
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stems for on-line condition monitoring and automatic
jeation. We help make it more economical to create
eaper energy out of thin air.
our experience, expertise, and creativity,
industries ca st performance beyond expectations.
Therefore we'need the best employees who can
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o 02 04 056 038 1

Figure 22: The curve K of Example 2.1.4.

hence
/yds = / o(p)sing - av2- \v/1—cosyp dga—aQ\[/ l—coscp%smgodcp
K 0

2 1
= Q\f[ (1—605@)3} :a2\/§-5-2 65a

ot

0

3) Tt follows from

2
dp? 1 1

that

[ ovias = /WJ— /fm

/0 Tpde= [Vi=e] =1

ALTERNATIVELY, 0 = sin g, @ € [O, g} and

\/sin? g 4+ cos2 ¢ =1,

thus
3 5 3
/\/gdS:/ \/sin g0~1dcp:/ sinpdp = 1.
K 0 0

4) It follows from

do .
— = —2a siny - cos g,
de
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08

0.6

02

Figure 23: The curve K of Example 2.1.5. (In fact, a segment of the line z = a.

that
do 2
2 —_
e (dcp)

Now, cosp > 0 for p € [O, g}, SO

do

a’? cos? {4 — 3cos? gp} .

2
0%+ <%) =a cos /4 — 3cos? p,

and the line integral becomes

/ Y gs — / osing
i V4a — 3p i V4a — 3p
= a\/ﬁ/zcos?’ap-
0
Ifgzi,then
Cos

do asing

@:c082<p’
hence

sin? ¢

s 2 .
2 acos” p-sme

s = —
0 +/4a—3acos?p

cos* ap} 2

sinpdp = av/a {— 1

2

do 2 1
2 ag\ _ o
¢+ (i) = et
where
do 2
2 —_ =
e (dw)

The line integral is obtained by insertion,

1 1 &
/*ds:/—st:/
K K @ 0

I2+y2

cost o

a

cos?

a

}

cos? ¢
-

a
cost ¢’

a T

cos? 4a

a? cos? o + 4a? sin? ¢ - cos? ¢ = a® cos? ¢ {0082 © + 4sin’ gp}

~acos /4 — 3cos? pdp

_ava
o 4

29
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0.5

002 04 06 08 1

Figure 24: The curve K of Example 2.1.6.

06 0.8 1 12 14 16

Figure 25: The curve K of Example 2.1.7.

6) If p = 0 —Inp, then

d 1 -1
dp ) 1_¢

2= o
hence
dy 2
1 — | =+/1 —1)2.
+(9dg) V1it(e—1)
Finally, we get the line integral by insertion,
2
/(x/xQ—i—y?—l) ds = /(Q—l)dS:/ V1+(e—1)2 (0e—1)do
K K 1
1 372 1
s [(1+ -2 =seva-.
s [+ -7 =z@eva-
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dp\ 1 1+ 02
H(gd_@) :\/H_?:%_@_
4 0 4

We get the line integral by insertion

2 T2 342
/’C(x2+y2)ds:/1 gzolTjLQngé {{1+92}5L:;{5\/5—2\/§}.
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Calculus 2c-7 Arc lengths and parametric descriptions by the arc length

3 Arc lengths and parametric descriptions by the arc length

Example 3.1 Compute in each of the following cases the arc length of the plane curve K given by an
equation of the formy =Y (x), x € I.

1) The arc length fIC ds of the curve

zt 448

y=Y@) ="

x € [2,4].

2) The arc length f,c ds of the curve

y:Y(x):acoshg, x € [—a,al.
a

[Cf. Example 3.4.1 and Example 4.1.8.]
3) The arc length f,c ds of the curve

e’ —1

y=Y(r) D

; x € [2,4].

4) The arc length fK ds of the curve
y=Y(@)=1a%, xel01].
5) The arc length fK ds of the curve
y=Y(@) =25,  xel01].

A Arc lengths of plane curves.

D Sketch the plane curve. Calculate the weight function /1 + Y’(2)? and reduce the line integral of
integrand 1 to an ordinary integral.

2 22 24 26 28 3 32 34 36 38 4

Figure 26: The curve K of Example 3.1.1.
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I 1) It follows from

x? 2 , x? 2 x* —16
that
1y 2 2

We get the arc length by insertion,

[ /mdw—/{%%}m{%—?}i

. 64-38 2+2_ .
o 24 4 2 o

Figure 27: The curve K of Example 3.1.2 for a = 1.

2) From Y’ (z) = sinh L follows that
a

h
14+ Y'(z)2 = 4/1+sinh? (f) = cosh —.
a a
The arc length is

“ x . xie
ds = cosh—dr=a {smh —} =2asinh1 = - (e —1).
K —a a al—a

3) It follows from
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-0.3

Figure 28: The curve K of Example 3.1.3.

so the arc length becomes

4 i i
h h4 2sinh 2 cosh 2
/ ds = / C(,)S T dr = [Insinhz]3 = In s%n =1In &
i 5 sinhz sinh 2 sinh 2

= In(2cosh2) =In(e* +e?) =In(e* +1) — 2.

3
4) Here, Y'(z) = 5 Vx, so

V14+Y'(z)? = \/1—&—%9&

The arc length is

371 3
! 9 4 2 9 \2 8 13\ 2 1
/’Cds /0\/ +oedr=g- o <+4x> o <4) 5 {13V13 — 8}

-0z 0 02 04 0% 08 i 12

-0.2

Figure 29: The curve K of Example 3.1.5.
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5) Since the arc length of y = x%, x € [0,1], is equal to the arc length of z = y%, it follows from
Example 3.1.4 that

/ ds = —{13\/_ 9}.

\V]

ALTERNATIVELY, Y'(2) = —x 3 thus

o (i [ i

(=) ] - () g fwm

¥ b YL
W\
272

\ I
’III " a‘
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-05

02 04 06 08

Figure 30: The curve K of Example 3.2.1.

Example 3.2 Compute in each of the following cases the arc length of the given plane curve IC by an

equation in polar coordinates.
1) The arc length f,c ds of the curve given by

g:acos‘lg, p € [0, 4n].

2) The arc length f,C ds of the curve given by
o0=a(l+cosy), v €0, 27].

3) The arc length f,c ds of the curve given by
o =1Inp, 0 € [1,e].

4) The arc length fK ds of the curve given by

g:asin‘o’g, € [0,3m7].

A Arc lengths in polar coordinates.

D First calculate the weight function 4 /0% + <
integral.
1) Since
d
ﬁ = —a-cos3%-sin%,

the weight is given by

do\ 2
92 + (—9) = a? cos® % + a? cos® 7

de

~ . sin

2@
4

=a

2

2
—'Q) possibly 4 /1 + (g —> , and then the line

36
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Figure 31: The curve £ of Example 3.2.2.

038 -06 -0.4 -0.2 0

Figure 32: The curve K of Example 3.2.3. (Part of the curve of Example 2.1.2).

4 dQ 2 4m 0 T
/ 0% + (_> dp :/ a‘cos:;—‘ dy :40,/ |COS3t|dt
0 dp 0 4 0
5

3 1
= 8a/ cos3tdt:8a/ (1 —sin®t)costdt = 8a [Sint—gsingt} = —.
0 0

hence

/ds
K

2) In this case,

do)\ 2
\[0* + <£) = a\/(l—i—cosnp)Q—i—sinQLp: a+/2(1 4 cosp) = a,/46052% = Qa’cosg

27 T z
/ds:/ 2a‘cosf‘ dg0:4a/ \cost|dt:8a/ costdt = 8a.
K 0 2 0 0

)

SO
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Figure 33: The curve K of Example 3.2.4.

follows that
/ ds:/\/ﬁdg:\/ﬁ(e—l).
K 1

ALTERNATIVELY, 0 = e¥, ¢ € [0,1], so (cf. Example 2.1.1)

2
0+ (;lf;) =v2e?,

hence

/de:/olx/ie“’dcp:\/i(e—l).

d
4) Here £ :a-sin2§~cosg, SO
0%+ do 2:@ sin6£+sin4£-cos,2f:a~sin2£
dy 3 3 3 3’

thus

3m ™ ™
/ds:/ asin2fdcp:3a/ sin2tdt:3—a (lfCOSZt)dt:ga—ﬂ.
K 0 3 0 2 Jo 2
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Figure 34: The space curve of Example 3.3.1.

Example 3.3 Below are given some space curves by their parametric descriptions x = r(t), t € I.
Ezpress for each of the curves there parametric description with respect to arc length from the point
of the parametric value tg.

1) The curve r(t) = (cost,sint,Incost), from to = 0 in the interval I = [O, g [

1
2) The curve r(t) = 7 (e cost, e’ sint,e') from tg = 0 in the interval I = R.

[Cf. Example 1.1.7/]

3) The curve r(t) = (Incost, Insint,/2t) from ty = g in the interval I = }O, g [

4) The curve r(t) = (Tt + cost, 7t — cost,\/2 sint) from ty = g in the interval I = R.

5) The curve r(t) = (cos(2t),sin(2¢),2 cosht) from tg =0 in the interval I = R.

6) The curve r(t) = (cost,sint,Incost) from to =0 in the interval I = }—g, g [
[Cf. Example 1.1.5.]
A Parametric description by the arc length.
D Find s'(t) = ||v'(¢)|] and then s = s(t) and t = 7(s), where we integrate from to. Finally, insert in
x =r(t) =r(r(s)).
I 1) From
r'(t) = | —sint,cost _sint te [O E[
- ) ) COSt ) ) 2 )

follows that

2
t 1
S() = [r'(8)] = \/ sin ¢ +cos?t+ S L o1

cos2t  cost’
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t b cosu b1 1 1
du = —,Qdu: — - + - cosu du
0 Cosu 0o 1—sin“u 0o 2\1+sinu 1—sinu

1 1+sinu\1" 1 1 +sint
= - ln S — = = ln E— .
2 1—sinu 0 2 1 —sint

»
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Figure 35: The space curve of Example 3.3.2.

Then
1+sint 2s _ 1
ﬂ =e?* dvs. sint= S tanhs, s2>0.
1 —sint e2s 1+ 1

Notice that it follows from ¢ € [0, g [ that

. 2e® 1
cost = 5—— = .
e?s+1  coshs
Thus
e —1
t = Arcsin | m——— | = Arcsin(tanh s), s> 0,
e +1

and the parametric description by the arc length is

() (cost, sint, ) 2e 2% —1 1 2e®
r(s) = (cost,sint,Incost) = n
’ ’ e2s +17e2s +1° e2s +1
1
= (,tanhs, —lncoshs> , s> 0.
cosh s
2) Here
r'(t) = 1 e' (cost —sint, cost +sint, 1)
\/g ) b )
so
1
s'(t) = ||t'(t)|| = —= €' \/(cost —sint)2 + (cost +sint)2 + 1 = e,
V3
hence
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Figure 36: The space curve of Example 3.3.3.

Finally, we get the parametric description by the arc length,

1 .
r(s) = 7 ((s+1)cos(In(s+ 1)), (s+ 1)sin(ln(s + 1)),s + 1)
s+1 .
= 7 (cos(In(s + 1)),sin(In(s + 1)), 1), s> —1.
3) From

int cost us
It — ——Sln e 2 t :|0 _|:
) ( cost’sint’f ' <3l

follows that

-2 2 .
sin“t cos“t sint  cost 1
") = I’ (t)|| = 2 = =
s (1) = [ @] cos?t Tt sin? ¢ cost + sint costsint’

™

ast € ]O, 5 { Then

t t oy .
1 sinu  cosu sint

s(t):/ %du:/ < + — )duzlnzlntant,
= Cosusinu = \cosu  sinu cost

and thus s € R and tant = e®, and

t i ! d sint i
cost = = , an Sint = ———.
V1+tan®t  V1+4e% V1+e?

The parametric description by the arc length is

1 1
r(s) = (—5 In(1 +e*),s — 5 In(1 + e**), \/§Arctan(es)> , seER

4) Here,

r'(t) = (7T —sint, 7 + sint, V2 cost),
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Figure 37: The space curve of Example 3.3.4.

Figure 38: The space curve of Example 3.3.5.

SO
sSt) = |I'@)| = /(7 —sint)2 + (7 +sint)2 + 2cos? t
= /249 + 2sin®t + 2cos2t = /98 + 2 = 10,
and thus

t
TG ST
s(t)f[rlodufm(tfg), sa t—10+2, s €R,

2

2

T 7
and the parametric description with the arc length as parameter from the point (771-, —7T, \/§>

is

r(s) = (78—:035” — sin (i) ,% + sin (TSO) , V2 cos (TSO

for s € R.

).
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5) It follows from

r'(t) = (—2sin2t,2 cos 2t, 2 sinh t),
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Figure 39: The space curve of Example 3.3.6; cf. Example 3.3.1.

that

st)=|'(t)]] = 2\/31112 (2t) + cos2(2t) + sinh® t = 2 cosh ,

hence
t
s(t)/ 2coshudu = 2sinh t,
0
so s € R and

t= Arsinh(Z)zln(i (s—|— 32—1—4)), s€R.

The parametric description with the arc length as parameter is

(coS (2 Arsinh (%)) ,sin (2 Arsinh (%)) ,2\/@>

(cos (2 Arsinh (g)) ,sin (2 Arsinh (%)) A4+ 52) ,

r(s)

for s € R.

This is an extension of the curve of Example 3.3.1, with the same parametric description
evaluated from the same point t; = 0. We can therefore reuse this example, since the only
change is that s € R,

1
r(s) = (,tanh s, —Incosh s> , for s € R.
cosh s
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14
12

-1 05 0 05 1

Figure 40: The chain curve for a = 1, cf. Example 3.4.1.

Example 3.4 Find for every one of the given plane curves below an equation of the form
(1) v ="¥(s),

where the signed arc length s is computed from a fixed point Py on the curve, while 1 is the angle
between the oriented tangents at Py and at the point P on the curve given by s.

1) The chain curve given by y = a cosh E, from Py given by x = 0.
a
[Cf. Example 1.2.2.]

2) The asteroid given by
r(t)=a (— cos® t, sin® t) , te [0, E} ,
from Py given by t = 0.
3) The winding of a circle given by
r(t) = a(cost + tsint,sint — t cost), teRy,
from Py given by t = 0.
4) The cycloid given by
r(t) = a(t —sint, 1 — cost), t € [0,27],
from Py given by t = 7.

It can by proved that (1) determines the curve uniquely with exception of its placement in the plane.
Therefore, (1) is also called the natural equation of the curve.

A Natural equation.

D Find the arc length s, and then 1 by a geometrical analysis.
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-1 05 v 05 1

Figure 41: The asteroid of Example 3.4.2.

1) The point Py has the coordinates (0,a). A parametric description of the chain curve is e.g.

t
— h—
r(t) <t, a cos a) ,

hence

r'(t) = (1,Sinh 2) , where r'(0) = (1,0),

and thus ¢ = Arctan (sinh t).
a

From

t t
s'(t) = ||t/(t)] = 1/1 + sinh® 0= cosh o

follows that

t t t
s(t) = / cosh = dy=a [Sinh E} = a sinh (—) .
0 a alo a

The natural equation is

¥ =U(s) = Arctan (2) )

2) The point Py has the coordinates (—a,0), and
r'(t) = a (3cos’t - sint,3sin’¢ - cost) = 3acost - sint(cost,sint).

For t — 0+ we get r/(0) = 0, and by considering a figure we may conclude that we have a horisontal
half tangent. Then it follows that ¢ = t.

It follows from

s'(t) = ||t'(t)|| = 3a cost - sint,
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W

-2

é/'n L

Figure 42: The winding of the circle of Example 3.4.3.

t t
3 3
s(t):/ 3a cosu-sinuduzg/ sin2udu:£{l—0082t},
0 0

hence
4s
2=1— —
cos 30
and
1 4
Pp="U(s)=t= §Arccos (1— 3—2) .

3) The point Py has the coordinates (a,0), and
r'(t) = a(—sint +sint + tcost,cost — cost + tsint) = at(cost,sint).

It follows that ¢ = t.
As t > 0 we have

s'(t) = |I' ()] = at,

thus
t
2
s(t):a/ udu:th, sét:\/—s,
0 2 a
and hence
2s
=W(s) =14/ —.
b=U(s) =[S

4) The point Py is described by r(m) = a(m,0). The curve has a vertical half tangent at Py. From

t t t t t t
r'(t) = a(l — cost,sint) = a (281112 5,231](15 cos 5) = 2asin§ (sin 508 5) ,
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25

Figure 43: The cycloid of Example 3.4.4.

follows that

t
s'(t) = ||'(t)|| = 2asin 3
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SO

and hence
t s s
cos 5 = ~1a’ dvs. t=2Arccos (—4—@) .

Since 1) must have the form at + b, it is easy to derive that

77/1:7r7t:7r72Arccos(fi>.
4a

Example 3.5 A plane curve K is given by the parametric description

t t
r(t) = (a/ sin (u?) du, a/ cos (u?) du) , teR.
0 0
The signed arc length from the point (0,0) is called s.

1. Find s, and find the parametric description of the curve given by the arc length.

It is proved in Differential Geometry that any plane curve has a curvature

e x (D)} (1)
0= weE

where we let the plane of the curve be the (X,Y)-plane in the space.

2. Prove that k is proportional to s for K.

The curve under consideration has many names: the clothoid, Euler’s spiral, Cornu’s spiral.
REMARK. “Clothoid” means in koiné, i.e. Ancient Greek: kKAwfw = I spin. ¢

A Parametric description with respect to arc length, curvature.

D Find ds and then compute.

I 1) As §'(t) = |r'(t)] and r'(t) = a (sin (¢?) , cos (%)), fas

S(t) = ay/sin® (2) + cos? (2) = a,

we get

s(t) = at and t(s) = 1 S.
a

The parametric description with the arc length is

xr(t)a(/otsin(u2) du, /Otcos(u2) du) a(/oisin(zf) du, /()zCOS(UZ) du).
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Figure 44: The clothoid for a = 1 and s € [—4,4].

2) From
r'(t) = a (sin (£?) , cos (t?)) ~ a (sin (£*) , cos (£?) ,0) ,
and
v’ (t) = 2ta (cos (tz) ,—sin (tg)) ~ 2ta (cos (t2) , —sin (t2) 7O) ,

follows that
2tacos (t*) —2tasin (t?) 0
2ta cos (t2)

{e. xr'(t)}-r"(t) 0 0 1|=-

asin (t?)
a sin (t2) a cos (t2) 0

= —2ta’.
As |Ir'(t)]| = a, we finally get

e xx/(t)}-r"(t)  2ta® t 2s
- [’ ()]1® - d Ta

Example 3.6 A space curve K is given by the parametric description

1
r(t) = <2t2—lnt,QSint,2cost>, tel,2.

1
Prove that ||/ (t)|| =t + 7 and find the length of K.

A Arc length.

D Compute ||r'(t)] og ¢ = fol llr’(¢)]| dt.

—2tasin (t2)

acos (t?)
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Figure 45: The curve K.

I It follows from

1
r/(t): (t—t,Qcost,—2sint>, tell,2],
that
1 2 1 1 2
WO = (1-3) aeoibasiti=r 24 b= (147)
thus

1 1
"D =t+=|=t+-
I (1)) ]+t\ +5

and accordingly,
2 , 2 1 t2 2 3
(= [x"(®)|l dt = 1+-)dt=|—=—+Int| ==-+1In2.

Example 3.7 A space curve K is given by the parametric description
r(t) = (e3t,e—3t,\/ﬁt), tel-1,1].
Prove that ||’ (t)|| = 3 (e3! 4+ 37%"), and find find the arc length of K.
A Arc length.
D Find r/(¢).
I We get by differentiation
r'(t) = (3 e3t, -3 e_gt,Sﬂ) =3 (e?’t, —e 3t \/5) ,
thus

I @1 = 3y/(30)? + (—e531)? 42 = 31/ (€3 + e=31)2 = 3 (e + e=1)
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Figure 46: The curve K.

and we get the arc length

) = [ wena- [ s a

1
2/ 3-2cosh 3t dt = 4[sinh 3t]§ = 4sinh 3.
0

LAN/ sPaR

Hcalendar

=

www. 1calendar.dk
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Example 3.8 A space curve K is given by the parametric description

1 1
r(t) = <§t3 —t, gt?’ +t,t2> ) te[-1,1].

Find the arc length of IC.
A Arc length.
D Find ||r/(t)]].

Figure 47: The curve K.

I It follows from

-
~
—
~
N
I

(t* — 1,¢* + 1,2¢),

I/ (£)]|2 = (12 =1)2 4+ (12 4+1)2 +4t% = 26124+ 412 = 2(t + 1)?,

hence

E(K):/11|r’(t)||dt:2/01 V2(2 4+ 1) dt = 2v/2 <%+1> = %.

Example 3.9 A space curve K is given by the parametric description
r(t) = (6t2,4\/§t3,3t4), te 1,1

Ezplain why the curve is symmetric with respect to the (X, Z)-plane. Then find the arc length of K.
A Arc length.

D Replace t by —t. Then find r/(¢).
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Figure 48: The curve K.

I Tt follows from r(—t) = (6t27 —4y2113, 3t4), that the curve is symmetric with respect to the (X, Z)-
plane.

From

r(t) = (12t, 12v212, 12t3> — 192 (1, \/§t,t2)
follows that

I/ (8)]| = 12[¢] - /1 + 262 + 4 = 12]¢] - (1 + £2).

Finally, when we exploit the symmetry above and put u = t2, we find the arc length

1 1 1
K :2/ Hr'(t)||dt:2/ 126(1 4 £2) dt = 12/ (14 u)du =12 (1+%> — 18
0 0 0

Example 3.10 A space curve K is given by the parametric description
r(t) = (t +sint, V2 cost,t — sint), te[-1,1].

1) Find a parametric description of the tangent of K at the point corresponding to

t=0.
2) Compute the arc length of K.
A Space curve.
D Follow the standard method.
I 1) Asr(0) = (0,v/2,0), and

r'(t) = (14 cost,—V2 sint, 1 — cost), r'(0) = (2,0,0),
it follows that a parametric description of the tangent of KC at (0,+/2,0) is given by

x(u) = (0,v/2,0) + (2u,0,0) = (2u,v/2,0),  weR.
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Figure 49: The curve K and its tangent at (0, v/2,0).

2) The arc length of K is

1 1
/ e ()| dt / V/(Lcos )2+ 2 sin? 1+ (1—cos t)? dt
—1

-1

1 1
/ \/2+2c082t+251112tdt:/ Vadt=2.2=4.
—1 —1
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Calculus 2c-7 Tangential line integrals

4 Tangential line integrals

Example 4.1 Calculate in each of the following cases the tangential line integral

/’C Vi(x) - dx

of the vector field V along the den plane curve K. This curve will either be given by a parametric
description or by an equation. First sketch the curve.

1) The vector field V(x,y) = (2% +y?, 2% —y?) along the curve K given by y = 1—|1—z| for x € [0,2].

2) The vector field V(z,y) = (22 — 2zy,y? — 2zy) along the curve K given by y = 2% for x € [-1,1].

3) The vector field V(z,y) = (2a — y,x) along the curve K given by r(t) = a(t — sint, 1 — cost) for
t €10, 27].

4) The vector field V(x,y) = THYy Y- ) along the curve K given by z° + y? = a® and run

2 + y2 T2 + y2
through in the positive orientation of the plane.

5) The vector field V(z,y) = (22 — y?, —(x +y)) along the curve K given by r(t) = (a cost,b sint)
forte [O, g} .

6) The vector field V(z,y) = (22 — y?, —(z +y)) along the curve K given by r(t) = (a(1 —t),bt) for
t € 10,1].

7) The vector field V(z,y) = (—y3,2) along the curve K given by r(t) = (1 + cost,sint) for t €
5]
2
8) The vector field V(x,y) = (—yQ, a?sinh g) along the curve K given by y = a cosh 2 forx € [a,2a)].
A Tangential line integrals.

D First sketch the curve. Then compute the tangential line integral.

0.8

0.6

0.4

0.2

Figure 50: The curve K of Example 4.1.1.
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I 1) Here the parametric description of the curve can also be written

_ x for x € [0,
Y=\ 22 for z € [1,

1
2

]
]

)
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“

0.84

0.64

0.4

0.2

708 06 04 02 O 02 04 06 08 i

Figure 51: The curve K of Example 4.1.2.

This gives the following computation of the tangential line integral
/ V(x) dx = / {(a:2 +y2) dx + (m2 — y2) dy}
K K
1
/ {(:c2 + :cz) dx + (:v2 - xz) dx}
0

+ /12 {(#*+@-2?) do+ (s - 2—2)°) (-do) }

! 2 2 2 2 371 2 372
= /02;10 dm—l—/l 2(2—x) dx:§[x}0+§[(x—2)]l
RETER
33 3
2) Here
V(x)-dx = /{(zz—Qxy) dx+(y272:17y) dy}
K i

- /1 {(a:2 — 21;3) dr + (x4 — 23:3) -QId.’L‘}

-1

1
= / (3;2 — 223 4+ 22° — 4374) dx
1
1

! 2 4 I 5 4 5
= (x —4x)dm—|—0:2 gx—gx

-1

1 4 2 14
= 2(--Z)=2(5-12)=——.
<3 5) 501 ="

0
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Figure 52: The curve K of Example 4.1.3 for a = 1.

Figure 53: The curve K of Example 4.1.4 for a = 1.

3) Similarly we get

/’CV(X) cdx = /]C{(2a—y)d3:—|—mdy}
= 7r{(2a—a(1—cos t))a(l—cost)+a(t—sint)asint}dt
0
27

a? {(14cost)(1—cost)+ (t—sint) sint}dt
0

2m 2
=a? {1—cos?t+tsint—sin?t}dt = a2/ tsintdt
0 0
a*[~tcost + sint]d™ = —2ma’.

4) We split the curve K into two pieces, K = K1 + Ko, where K; lies in the upper half plane, and
Ko lies in the lower half plane, i.e. y > 0 inside K1, and y < 0 inside Ko. Then we get the

Download free books at BookBooN.com

60



Please click the advert

Calculus 2c-7

Tangential line integrals

tangential line integral

[veoac = [ (54

y—x
d
Ty y)

1

K
1 9 9 1
= —dln(:z: —|—y)+ —— | ~dr+z
K 2 K (z) Yy
1+
1

= ot G) () /1_’_<1x)2d<
_ / dAmtan(g) dAman@

dx
11, 1
/7$2+y2§d(1‘ —i—y)-l—/KTerQ (ydx — x dy)

= [Arctan t] % + [Arctan t]. 35 = —7 — 7 = —2m.
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02 04 06 08 1

Figure 54: The curve K of Example 4.1.5 for a =1 and b = 2.

ALTERNATIVELY we get by using the parametric description
(z,y) = a(cost,sint), t €[0,27],
that

x+y y—x
V(x)-dx = d d
[ oo (e 55
2w 2
= / —{(cost+sint)(—sint)+(sint—cost) cost}dt
0 a
27

= {—cost-sint—sin?®t+cost - sint—cos? t}dt
0

2m
= —/ dt = —2m.
0

5) Here
[ Ve -ix= [~ o~ o+ g)dy)
K K
= /2{(a2 cos? t—b*sin® t)(—asint)— (acost+bsint)bcost}dt
0

= /2{—a[(a2+b2)cos2t—b2] sint—abcos? t—bsint cost}dt
0

2 oL 3 2 ab L. Lo .o |?
= |+a(a”+b%) = cos® t—ab” cost— — (t+ = sin 2t) — —b“ sin” ¢
3 272 2 ]

ab © b a(a®+b?) 5 A,.5 o b
——7-5—5—7—#% —§(2b —a)—1(2b+a7r).
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0702 04 06 08 1

Figure 55: The curve K of Example 4.1.6 for a =1 and b = 2.

6) Here
[ Vo0 dx= [ (@~ Py = o+ )iy}
\Z K
- / {[®(1 = )% — 1) (—a) — [a — at + bi] - bldt
0

1
= / {—a®(t — 1) + ab®t* + b(a — b)t — ab}dt
0

3 2 1 1
:[—%(t—1)3+%t3+§b(a—b)t2—abt
0
ab®> 1 a®
T+§(a—b)b—ab—§
_ Qo o b
3(b a’) 2(a+b)

REMARK. The vector field V(x) is identical to that in Example 4.1.5 and in Example 4.1.6.
Furthermore, the curves of these two examples have the same initial point and end point.
Nevertheless the two tangential line integrals give different results. We shall later be interested
in those vector fields V(x), for which the tangential line integral only depends on the initial and
end points of the curve K. (In Physics such vector fields correspond to the so-called conservative
fields.) We have here an example in which this ideal property is not satisfied. ¢
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0.8

0.6

0.4

0.2

Figure 56: The curve K of Example 4.1.7.

7) We get
/ V(x)-dx = / {~y3dz + 23dy}
K K

= / {—sin®t- (—sint) 4 (14 cost)3 cost}dt
z

s
= / {sin® ¢ + cost + 3cos? t 4+ 3cos® t + cos® t}dt

2

4 1 3 3
:/ {Sin4t+cos4t+(2cos2t~sin2t—2sin22t>—|—cost+2+2Cos2t—|—3cos?’y}dt

2

s

T 1 1 3
:/ {(Sin2t+0082t)2 ~ 1 + 1 cos4t + cost + 5 cos 2t + 3cost — 3sin® ¢ cost} dt
2

- = e by — 3 -
1 + Sin 41 + Sin t + t + S11 21 + S11 t Sin t
S. S.

us
2

=
XS
ISH
"
I

. / {—yzdx+a2sinh£dy}
K K a

2a
= / {—a2 cosh? z dx + a® sinh z. sinh z da;}
o a a a

= —a? /:a {cosh2 (g) — sinh? (g)}dm = —a’.

Download free books at BookBooN.com

64



Calculus 2c-7 Tangential line integrals

0.8
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Figure 58: The curves y = v/3z, y = v/3z and y = /3 22.

Example 4.2 Compute the tangential line integral of the vector field
V(z,y) = (2zy,2°y?)

along the curve K give n by y = ax®, x € [0,1]. Then find a such that the line integral becomes
independent of .

A Tangential line integral.
D Just use the standard method.

I We compute the line integral

1
/ V(z,y)-dx = / (2zy dx + 2%° dy) = / {2za2’ + 2%a2®" - aba® '} da
K K 0

1 3 2
2a a’b a(a®b + 6)
2 b+1 3b 3b+5 dr = _ )
/0 {2a 2" +a’b 27} da 7 2+3(b ) )

Assume that this result is independent of b. Then b+ 2 must be proportional to a?b+ 6, so a® = 3.
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Example 4.3 Compute in each of the following cases the tangential line integral

/KV(X) -dx

of the vector field V along the space curve IC, which is given by the parametric description
K={xeR®|x=rx(t),tel}.

1) The vector field is V(z,y,2) = (y* — 22, 2yz, —2?), and the curve K is given by r(t) = (t,t2,t3) for
tel.

1
xr+z

2) The vector field is V(z,y,z) = (
(t,12,%) fort € [1,2].

2
z, —— |, and the curve K is given by r(t) =
Y+ x+y+z>, g y r(t)

3) The vector field is V(x,y,2) = (322 — 6yz,2y + 3x2,1 — 4xyz?), and the curve K is given by
r(t) = (t,t%,%) fort € [0,1].

4) The wvector field is V(x

Y, 2) = (322 — 6yz,2y + 3x2,1 — 4ayz?), and the curve K is given by
r(t) = (t,t,t) fort € [0,1].

5) The vector field is V(z,y, z) = (322 — 6yz, 2y + 32z, 1 — 4ayz?), and the curve K is given by

(0,0,1), fort €[0,1],
r(t) =< (0,t—1,1), forte]l,2],
(t—2,1,1), forte[2,3)].

6) The wvector field is V(z,y,2) = (z,y,xz — y), and the curve K is given by r(t) = (t,2t,4t) for
t e 0,1].

7) The vector field is V(x,y, z) = (2¢ 4+ yz,2y + 22,2z + xy), and the curve K is given by

r(t) = (a(cosht) cost,a(cosht)sint, at) fort €0, 2n].

8) The vector field is V(z,y,2) = (y* — 22,2yz, —2?%), and the curve K is given by r(t) = (t,t,t) for
t €10,1].

A Tangential line integrals in space.

D Insert the parametric descriptions and compute the tangential line integral. Notice that Exam-
ple 4.3.7 is a gradient field, so it is in this case possible to find the integral directly.

I 1) We get

/V(x)-dx = /{(y2—z2)dx+2yzdy—m2dz}
K K

1
/ {@ —tO) 4262 ¢ 2t — 3. 347} dt
0

2 1
5 35

| w

1
/ {3t° — 2111 at =
0
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2) Here

/’C Vi(x) - dx

AeE

6t
{ 1+t2+2+t2

[lnt — = In(1+#*) +31In(2 + %)

/ (t+t3) + 6t dt
t+t3 2t + t3

t
+o+

+t+t3}dt

2

2

2
d +2)d 7d
)

4

tr
1

4

16 1 1

4
ln2——ln5+3ln6——ln2 31ln 3+2+—————

9 21 21 1

21n2—|—§1 no+ —=—+-1In

4 4 2

3) First notice that for any curve,

5

5

12

4 2 4

/ V(x)-dx = / {(322 —6yz)dx+ (2y+3x2)dy+ (1 —4ayz?)dz}
K K

(2)

z/ d(x3+y2+z)—/ z{6ydx—3xdy+4ryzdz}.
K K

Such a rearrangement can also be used advantageously to Example 4.3.3, Example 4.3.4
and Example 4.3.5.

When we apply (2), we get

| v

ALTERNATIVELY, it follows by a direct insertion that

/’C V(x) - dx

[+ +9* +2] g0

= —

0

1
3—/ 12tMdt=3-1=2.
0

1
—/ t3{6t% — 3t - 2t +t° - 3t>}at

/ {(32% — 6y2)dz + (2y + 3z2)dy + (1 — 4zyz?)dz}

/ {(3t2—61% - t3)+ (24> 3t - t3)2t 4+ (1—4t - t* - t°)3t%}at
0

1
/{3t276t5+4t3+6t5+3t2712t11}dt
0

1
/ (662 + 4% — 12" dt = [26 + ¢4 — %], = 2.
0

4) The vector field is the same as in Example 4.3.3. Then we get by (2),

/’C V(x) - dx

1
[azg+y2+z](1’1’l)—/ (61> —3t>+4t*)dt

0,0,0
( ) 0

1

4

3—/ (3t2+4t4)dt:3—1—5
0

6
-

68
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ALTERNATIVELY, it follows by a direct insertion that
1
/ V(x)-dx) = / {(3t*—6t2) + (2t +3t%) +1—4t*}at
K 0

1
4 6
/ (1+2t—dtHdt =1+1— - = —.
. 5 5
5) The vector field is the same as in Example 4.3.3. When we apply (2) and just check that r(t)

is a continuous curve, we get

/V(x) Sdx = [x3+y2+z]§(1))(1)7(1);_/ z{6ydx —3xdy+4ryzdx}
K o K

1 3
= 3—/0dt—/+20dt—/ 1-6dt=3—-6=-3.
0 1 2

ALTERNATIVELY, it follows by direct insertion that

/V(x)~dx = /{(39&2—6yz)dm+(2y—|—3xz)dy—|—(1—4xyz2)dz}
K K

1 2 3
_ 4. _ _9)\2 _
_ /0(1 4 0)dt+/1 (2t 1)+0}dt+/2 (3(t—2)2—6}dt

2 3

— m+z[5a-12] +3[5e-20 -2
= 1+14+1-3-2-3+3-2.2=3(1-6+4)=-3.

6) Here we get by insertion,

/V = /’C{xd$+ydy—|—(xz—y)dz}
= /{t+2t-2+(t~4t—2t)~4}dt
0

1 1

= / (t + 4t + 16t* — 8t)dt = / (16t — 3t)dt
0 0

6 3 329 %

32 6 6

7) It follows immediately that

/V(x)~dx = /{(2x—|—yz)dx—|—(2y+xz)dy—|—(2z1:y)dz}
K K

/ {d(2* +y° + 2°)+ (yzde+rzdy+rydz)}
K

a(cosh 27,0,27)
(z,y,2)=(a,0,0)

= a®cosh? 27 + 4a*7? — a® = a® (47 4 sinh? 27r).

= /d(x2+y2+zz+xyz) = [:172+y2+22+xyz]
K

ALTERNATIVELY, we get by the parametric description
r(t) = a(cosht - cost,cosht -sint,t), te0,2n],
that

r'(t) = a(sinht - cost—cosht - sint,sinht - sint+cosht - cost, 1),
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/’C{(Qa: +yz)dx + 2y + x2)dy + (22 + zy)dz}

S
<
L)
ISH

"
I

2
/ (2a cosht cost+a?t cosht sint)a(sinht cost—cosht sint)dt
0
2m
+ / (2a cosht sint+a? cosht cost)a(sinht sint+cosht cost)dt
Jo

2m
+/ (2at+a” cosh? t - cost - sint)a dt
0
= a2.(...)+a3.(...),

Then the easiest method is to reduce and use that

_1 it —it : _i it —it
cost72(e +e ), smtf%(e e ),

and similarly for cosht¢ and sinht. We finally obtain the result by a partial integration.

www.job.oticon.dk

PEOPLE FIRST

Download free books at BookBooN.com

70


http://bookboon.com/count/pdf/346355/70

Calculus 2c-7 Tangential line integrals

The variants above are somewhat sophisticated, so we proceed here by first calculating the
coefficient of a?:

27
/ 2cosht - t(sinht - cost — cosht - sint)dt
0
2m 2m
+/ 2cosht - sint(sinht - sint 4 cosht - cost)dt + / 2t dt
0 0

2m 2m
= 2/ cosht - sinht¢dt + / 2tdt = [sinh2 t+ t2] iﬁ = 47 + sinh? 27,
0 0
Then we find the coefficient of a®:
2
/ t{cosht sinht sint cost—cosh?® ¢ sin®}dt
0
2 2m
+ / t{cosht sinht sint cost+cosh?t cos® t}dt + / cosh?t cost sint dt
0 0
2m 1 2m
= / t(cosht sinht sin 2t+cosh? ¢ cos 2t)dt + 5 / cosh® t sin 2t dt.
0 0
Notice that
d 1 2 . . . 2
713 cosh”t-sin2t » = cosht -sinht - sin2t+4cosh” ¢ - cos 2t,

so the whole expression can then be written

27
d (1 dt 1
/0 {t T (5 cosh? t sin Qt) +E . (5 cosh? t sin 2t> } dt

gt ' (2
= / — [ = cosh®t sin2t ) dt = | = cosh?¢ - sin 2t =0.
0 dy 2 2 0

As a conclusion we get
/ V(x) - dx = a? (472 + sinh® 27) + 0 - a® = a® (472 + sinh® 271).
K

8) Here we get [cf. also Example 4.3.1, where the vector field is the same]

/KV(X)~dX) = /K{(yQ—z2)dx—|—2yzdy—x2dz}
I L. 2 oy [ _ !
- /O{(t 2) + 2t t}dtf/o Pt = .
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Example 4.4 Compute in each of the following cases the tangential line integral of the given vector
field V along the given curve K.

1) The vector field is V(z,y) = (x + y,x — y), and the curve K is the ellipse of centrum (0,0) and
half axes a, b, run through in the positive orientation of the plane.
1 1

|z + [yl |=[ + ly]

2) The vector field is V(z,y) = ( ), and the curve IC is the square defined by its

vertices
(170)7 (071)7 (_170)7 (07_1)a
in the positive orientation of the plane.

3) The vector field is V(x,y) = (2? — y,y* + ), and the curve K is the line segment from (0,1) to
(1,2).

4) The vector field is V(x,y) = (2 — y?,9y* + ), and the curve K is the broken line from (0,1) over
(1,1) to (1,2).

5) The vector field is V(z,y) = (2% — y,y?> + 1), and the curve K is that part of the parabola of
equation y = 1+ 22, which has the initial point (0,1) and the end point (1,2).

6) The vector field is V(z,y,z) = (yz, xz, x(y + 1)), and the curve K is the triangle given by its
vertices

(07070)7 (13131)’ (7171371),
and run through in given sequence.

7) The vector field is V(x,y,z) = (siny,sin z,sinx), and the curve K is the line segment from (0,0, 0)
to (m,m, ).

8) The vector field is V(x,y,z) = (2, x, —y), and the curve K is the quarter circle from (a,0,0) to
(0,0, a) followed by another quarter circle from (0,0,a) to (0.a.0), both of centrum (0,0,0).

A Tangential line integrals in the 2-dimensional and the 3-dimensional space.

D Sketch in the 2-dimensional case the curve K. Then check if any part of V(x) - dx can be sorted
out as a total differential. Finally, insert the parametric description and compute.

I 1) As K is a closed curve, we get

[ veax= [ (s ot @) = [ a(e*va-502) =0

because V - dx is a total differential.

ALTERNATIVELY, K has e.g. the parametric description
(z,y) =r(t) = (a cost,b sint), t €10, 27},

thus

r'(t) = (—a sint,b cost).
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Figure 59: A possible curve K in Example 4.4.1.

Figure 60: The curve of Example 4.4.2.

Then by insertion,

/’CV_dX:/)C{(x+y)dx+(x—y)dy}

2

= {(acost+bsint)(—asint)+ (acost—bsint)bcost}dt
0
27

= {—a®cost sint—absin® t4+abcos® t—v? sint cost}dt
0

27
1
:/ {abcos2t— §(a2+b2)sin2t} dt = 0.
0

2) Since |z| + |y| =1 on K, we have

1
V-dx:/i dz + dy :/1dx—|—y =0.
J. MEERTECRE I
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Figure 61: The curve K of Example 4.4.3

ALTERNATIVELY, and more difficult we can use the parametric description of K given by

(1—t,1), tel0,1],
ao ) -2t teL2]
r(t) (t—3,2—1), te23]
(t*37t74)7 t€[374]’
hence
(-1,1), telo,1],
vy =) LoD, tel]l,2],
(1,-1), te€]2,3],
(1,1), t€]3,4|

Since |z| + |y| =1 on K, we get

/’CV-dx - /}C(d:c—i—dy):/01(—1—1—1)(115—1—/12(—1—1)dt+/23(1—1)dt+/34(1+1)dt
— 0-2+0+2=0.

3) First notice that

1
/KV-dx = /’C{(x2—y)d:c+(y2+x)dy}:g/lcd(x3+y3)+/lc(—ydx+xdy)
1
3

8+1-— 1)+/K:(—yd$+$dy)7

(3)/’CV~dx §+/K(fydx+xdy)
(4) - /,< (@ — y)dz + (4 + 2)dy).

Now we compute Example 4.4.3, Example 4.4.4 and Example 4.4.5 in the two variants
corresponding to (3) and (4), respectively.
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Figure 62: The curve K of Example 4.4.4.

Then by (3),

8 ! 8 5
Vodx=° ()t tdt= —1="2.
[ veax=G [H-Grnrna=3-1-3

ALTERNATIVELY, we get by (4) that
1 1
/\ﬁdx = /{f4%1+w+%1+ﬂ2+ﬂﬁ:i/{ﬂ+ﬂ2+ﬂflwt
K 0 0

1=2.

]18+11 5
0 3 3

1 1
= |4+t +-t3—t
h(+)+3

4) Tt follows from (3) that

8 ! 2 8 8
V.dx = - —1)d ldy=>—-1+1=-.
/;c x 3+/0():v+/1 y=s-1+1=2

ALTERNATIVELY, we get by (4),

1 2 1 1o 2
V.dx = /(:v2—1)dx+/(y2+1)dy:[§x3—a:] +{§y3+y}
0 1

K 0 1
1 8 1 8
= s l4o42- - 1=,
3 +3+ 3 3
5) By (3),
8 1
V.dx = 7+/{(—1—1:2)+x-2x}dx
K 3 Jo
= §+/1(l‘2—1)d$—§+ larg—acl—§—i—l—1—2
3 ) 33 o 3 3
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Figure 63: The curve K of Example 4.4.5.

ALTERNATIVELY, by (4
/V-dx /{x — 2% =1+ [(2® + 1) + 2] - 22)dx
K
/{295 + 423 4 22 4 22 — 1}dx
K
1
2

1 2 1 2
= [§x6+x3+§x3+x —x 0:§+1+§+1—1:2.

6) Here a parametric description is e.g. given by

(t,t,1), t €10,1],
r(t) = (3—2t,1,3—2t), te[1,2],
(t_37a_t+3at_3)a [273}7
hence
(1,1,1), telo,1],
v(t) =< (-2,0,—2), te]l,2,
(177131)7 t 6]2a3[

FIRST VARIANT. We get by direct insertion,

/V-dx:/{yzdm—i—mzdy—i—x(y—i—l)dz}
K

/(t2+t2+t2+t dt+/ {1-(3-2t) - (=2)+(3—2t) - 2- (-2)}at

0

+/ {(=+3)(t=3) - 1+(t—3)% - (<) +(t—3)(—t+3) - 1+t—3}dt

1 2 3
_ 2 _ _ _ 22 (4
_ /O (362 + )t — 6 /1 (3 — 20)dt /2 (3(t—3)% — (t—3)}dt
3

- [t3+;t2]:+6[t2—3t]f— {(t—3)3—;(t—3)2}

2

1
:1+2+6(4—6—1+3)+(—1—):0.
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2. variant. Reduction by removing a total differential.
As

V.dx =yzdx +xzdy + xydz + xdz = d(zyz) + x dz,

and as K is a closed curve, we have [, « d(wyz) = 0, so the calculations are simplified by removing
d(xyz):

/V dx = /d(:z:yz) /:z:dZ—OJr/dez
/ tdt+/ 3 —2t) )dt+/3( — 3)dt
3

= [§t2]0+/1(4t— )dt—i—[;( 3)2}2

1 2 1
= —4+[2n2—6t] —==8-12—-24+6=0.
2+[ ]1 2 +

REMARK. The expressions will be even simpler, if we do not insist on that the parametric
intervals [0, 1], [1, 2], [2, 3] should follow each other. Instead one can split K into three subcurves

’Cl : rl(t) = (t7t,t)7 [0 1]

Ko: ro(t)=(1—2t,1,1—-2t), tel0,1],

]C3Z Pg(t):(t—l,l—t,t—l), [0,1}
where

Ky r(t):(L 71) tE] ’ [7

4 1
Kot rh(t) = (=2
Ks: rh(t)=(1,—

We obtain that the three line integrals can be joined like in the second variant above:

/V~dx = ~~:/de*/ xdz+/ xder/ T dz
K Ka K3

1
/tdt+/ (1—2¢) )dt—l—/(t—l)dt

3/0 (2t —1)dt =3[t —],=0. O

7) The most obvious parametric description is here
r(t) =t(1,1,1), medr'(t) =(1,1,1), t e 0,7l

Thus we can put x = y = z =t everywhere. Then
/ V.dx = / {sinydz +sinzdy +sinzdz} = / 3sintdt = [-3cost]f = 6.
K K 0

8) If we call the two curve segments for Ky and K, then the most obvious parametric description
is

Ki: afcost,0,sint), te [0,

SO

|
J

Ko: a(0,sint,cost), te {0,5 )
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Then by insertion,

/V-dx = /(zdw—i—xdy—ydz)
K K

s

= d? /%(sint- (—sint))dt + (12/2 (—sint) - (—sint)dt
0

0

w3

%
= —a2/ sin2tdt+a2/ sin®tdt = 0.
0 0
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Example 4.5 Find in each of the following cases a function

®(oy) = [ V&) ix,

to the given vector field V : A — R?, where K is the broken line which runs from (0,0) over (z,0) to
(z,y). Check if ® is defined in all of A, and compute finally the gradient 7 P.

1) The vector field V(z,y) = (y? — 22y, —2? + 2xy) is defined in A = R2.

1

2) The vector field V(z,y) = | ——
y2 _ 1'2 +1

, :17) 1s defined in

A={(z,y) | —vV14+y?2 <z <1+y?*}

Y

x
<\/1ac2yz7 \/afx2fy2

3) The vector field V(z,y) = > is defined in the disc A given by
2?2 +y? < 1.

z—1 Y

Ve -1 +y V-T2 +y?

4) The vector field V(z,y) = (
(1,0).

) in the set A given by (x,y) #
5) The vector field V (x, cosy,cosx) is defined in A =R2.
cos(xy),0) is defined in A = R2.

(z,y
6) The vector field V(x,y
7) The vector field V(z,y

(z,y

) = (
) = (co
) = (2% + 4%, zy) is defined in A = R2.
) = (22

8) The vector field V (x, 2% +y?, 2xy) is defined in A = R2.

A Tangential line integrals.

D Remove whenever possible total differentials. Integrate along a broken line. Finally, compute the
gradient \y®.

I 1) We get by inspection,
®(z,y) = / V(x)- dx = / {(7° — 229)dz + (—&° + 2E§)dy }
K K

- / dG — Pj=af oty (=ayly — ).
K

ALTERNATIVELY,

z Y
®(r,y) = /}C {(7° — 229)di + (—&° + 2E7)dj} = /O 0dt + /O (—x? 4 2xt)dt = xy* — 2°%y.

Finally,
Ve = (y° — 22y, 22y — 2%) = V(z,y),

and ® is defined in all of A = R2.
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2)

0.5

0.5

-1

Figure 64: The domains of V(z,y) and ®(x,y).

The domain A for V(z,y) lies between the two hyperbolic branches given by 22 — y? = 1. The
domain A of ®(x,y) is smaller, in fact the points lying between the two vertical lines 2 = +1,
because we can only reach these by curves of the type K. (The curve K must never leave A,
because we require that V is defined).

We get for (z,y) € A,

xT 1 Yy
(5) @(x,y):/o ﬁdt—t—/o xdt = Arcsin x + xy.

The function ® is only defined in A. In this subset of A we get

1
7_1’_ 7:1;
V1—22 Y

In particular, V(z,y) is not a gradient field.

ve(r,y) = # V(z,y).
( )

REMARK. Formula (5) is a mindless insertion into one of the solution formula for this type of
problems. It cannot be applied here because the assumptions of it are not fulfilled. ¢

Here we get

®(,y)

€ Y
——dr + ————=d
/}c{\/l—gﬂ—y? x+\/1—m2—y2 y}
= [ d(-vV1-22—y2)=1—/1—22 2
A:( x y) a? —y

ALTERNATIVELY we get for 22 4+ y? < 1 by integration along the broken line that

r t Y t T Yy
w0 = [ e [ e [T Vi
@) /0 V1—1t2 +/o V1—x22—12 0+ . 0

= 1-V1-224+ V12— 1-22 -2 =1—-/1—22 — 2.

It follows immediately that

Ve (r,y) = (Vl_zg_y, JI_ZQ_yQ) = V(,p),
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0.59

0.5

Figure 65: The domain A of @ lies to the left of the dotted line z = 1.

and that @ is defined in all of A.
4) In this case we have for any curve K from (0,0) in A that

r—1 Y
®(z,y) = / dx + dy
(#39) ic{\/(x—l)2+y2 V(e —1)2 +y?
= /d( (m—1)2+y2): (x—1)2+y>—1.
K
If we only integrate along curves K of this type, then we can only reach points in

A={(z,y) |z <1,yeR}

By integration along a broken line in this domain,

r t—1 Y t
B(x,y) = /—dt+ — it
0 VE—1)2 102 o V@—12+e

T v
- — —12 412
/0 1] +[Va=nee]

= /x(—l)dt-F [\/(m 12492 - J(z - 1)2] (because t < x < 1)
0
= o1+ E PR == (1 —0) VI

= (x—1)2+y2 -1
It follows that y® = V and that ® can be extended to all of A.
5) When we integrate along the broken line

(0,0) — (2,0) — (z,y)
we get

z y
‘I’(:C,y)z/V-dx:/ cosOdt+/ coszdt =z +y cosz,
K 0 0

which is defined in all of R2. Here,

vV®(z,y) = (1 —ysinz,cosx) # V.
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It is seen that V is not a gradient field.
6) When we integrate along the broken line

(0,0) — (2,0) — (z,y)

we get in all of R?,

‘I’(l‘,y):/Klex:/ cos(t-0)dt +0 = z,
0

where 7® = (1,0) # V, so V is not a gradient field.
7) When we integrate along the broken line
(070) - (LC,O) - (l’,y)

we get in all of R?,

'1’(9671/)=/}CV-dX=/ (t2—|—02)dt+/ xtdt:x3+§xy2,
0 0

o
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where
2, 1 9
Ve = (356 +3y xy) # V(z,y).
It follows that V is not a gradient field.
8) When we integrate along the broken line
(070) - (1‘,0) - (as,y)

we get in R?

T y 3
‘I’(x,y):/V~dx:/ (t2+02)dt+/ 2xtdt:%+:1:y2,
K 0 0

where
Ve = (2® +¢*, 22y) = V(z,y).

In this case V(z,y) is a gradient field.

Example 4.6 Compute in each of the following cases the tangential line integral of the given vector
field V : R? — R? along the described curve K.

2 2
axes a, b, in the positive orientation of the plane.

1 1
1) The vector field V(z,y) = v/ (— 2?2 oy — = y2) along the ellipse K of centrum (0,0) and half

2) The vector field V(z,y) = v/ (z* +1In(1 +y)) along the arc of the parabola K given by y = 22,
x € [-1,3].

3) The vector field V(x,y) = v (x + 2y — exp(zy)) along the broken line IC, which goes from (2,0)
over (1,2) to (0,1).

A Line integral of a gradient field.

D As V(z,y) = VF, the tangential line integral is only depending on the initial point and the end
point,

| Vedi=Fx) - Fx)
I

I 1) The ellipse is a closed curve, so

/V~dx:0.
K

2) The initial point is (—1,1), and the end point is (3,9), hence

/V-dx: [+ In(1+ )] "7, =81 +1n10— 12 =80 +In5.
i ,
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3) The initial point is (2,0), and the end point is (0, 1), thus

/V~dx=[m+2y—exp(a:y)]gg’(1)§:O+2—1—2—0—|—1=O.
. :

Example 4.7 Compute in each of the following cases the tangential line integral of the given vector
field V : R? — R? along the described curve K.

1) The vector field \7(x? + yz) along the curve K, given by

r(t) = (cost,sint,sin(2t)), t €10, 2m].

1 1
2) The vector field <7 (cos(xyz)) along the line segment K from <7r, 5,0) to (5, , 1>.

3) The vector field s7(expx + In(1 + |yz|) along the broken line K, which goes from (0,1,1), via
(m,—3,2) to (1,7/3,—/3).

A Tangential line integrals of gradient fields.

D Use that
/ VF - dx = F(end point) — F(initial point),
K

is independent of the path of integration.

Since the absolute value occurs in Example 4.7.3, we shall here be very careful.

I 1) As K is a closed curve (i.e. the initial point (1,0,0) is equal to the end point), it follows that

/V-dX:O.
K

2) Since F(x,y,z) = cos(zyz), and the initial point and the end point are given, we have

[V (br () = e (n- b 0) <1

3) First notice that

expz +In(l +yz) for yz >0,
expz +1In(l —yz) for yz <0,

Flena) = {

so we must be very careful, whenever the curve C intersects one of the planes y =0 or z = 0.
In case of the first curves this can occur, because the parametric description is

t(0,1,1) + (1 = t)(m,-3,2) = ((1 = t)m,4t — 3,2 —t), t<][0,1],
and the same is true for the second curve, because it has the parametric description

t(m,—3,2)+ (1 —)(1,V3,—V3) = (1 +t(r — 1),V3 = t(3+V3), —V3 + t(2 + V3)),
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for ¢ € [0, 1].

3
The former curve intersects the plane y = 0 for ¢ = —, and the latter curve intersects both the

plane y = 0 and the plane z = 0. The point is, however, that in everyone of these intersection
points the dubious term In(1 4 |zy|) = 0, so they are of no importance. Hence we can conclude
that

/ V.dx = [expz+In(l+ |yz|]ééﬁ)_\/§)
. 1,

= e+Ind—1—-In2=e—1+1n2.

REMARK. Always be very careful when either the absolute value or the square root occur. One
should at least give a note on them. ¢

o
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Example 4.8 Given the vector field

2y y
Vv = In(2 .
(z,y) <2x+y,2x+y+ n(w+y)>

1. Sketch the domain of V, and explain why V is a gradient field.
2. Find every integral of V.
Let IC be the curve given by

(z,y) = (2t%,1), 1<t<2.

3. Compute the value of the tangential line integral

/V~tds.
K

Let F be the integral of V, for which F(1,1) = 0.

4. Find an equation of the tangent at the en point (1,1) of that level curve for F, which goes through
the point (1,1).

A Gradient field, integrals, tangential line integral, level curve.

D Follow the guidelines.

-1 706 UR0:204060.8 1

Figure 66: The domain is the open half plane above the oblique line.

I 1) Clearly, V(z,y) is defined in the domain where 2z +y > 0, cf. the figure.

As
°)%! 2 2y
Dy - 2e+y  (2z+y)?
and
oVa 2y 2 oy
Dx (2z+y)? +2x+y T oy

it follows that V; dx 4 V5 dy is a closed differential form. Since the domain is simply connected,
the differential form is even exact, and V is a gradient field.
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2) Since

2 2dz
Fl(x,y)=/2xzydx=y/ =yWz+y), 22+y>0,

2z +y

where

2y Yy
F = In(2 =V
\VA 1 <2x+y’2x+y+ Il( I+y)> (xay)a

all integrals are given by

F(z,y) =y In(2z +y) + C, CeR.

05

Figure 67: The curve K.

3) We get by the reduction theorem for tangential line integrals that

/KV-tds _ /jV(r(t))-r’(t)dt

= /2 2t ! +In(4t% +t) ) - (4t,1) dt
N 4t2+t’4t2+t '

_ 2

= { 4t—|—1 + In(4t= + )}dt

= {2 4t+ : +1nt+1n(4t+1)}dt

— o Yt Pt s - [ 2
N 4 ! 1 4t +1

= 2In2+4In3—-1Inb —ln%

4) Tt follows from F'(1,1) =In3+4 C =0 that C = —1In3, so

F(z,y) =y In(2z +y) — In3.

Z—Z[ln(llt—i-l)] +2In2-14+2In9—-Inb5—-1+- [ln(4t+1)]
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Calculus 2c-7 Tangential line integrals

However, we shall not need the exact value of C' = —1n 3 in the following.

The normal of the level curve is \7F = V, hence

21
V(1) ==,z +1
(1) = (5.5 +m3).
and the direction of the tangent is e.g.

1 2
—(Z4+m3 -2
v (3+ n3, 3),

and we get a parametric description of the tangent,

(2(), y(1) = (1,1) = ¢ (% +1n3,_§) . teRr

If we instead want an equation of the tangent, then one possibility is given by

2 1
0:V~(;v—1,y—1):§x+<§—|—ln3>y—l—ln3.

Trust and responsibility

NNE and Pharmaplan have joined forces to create - You have to be proactive and open-minded as a
NNE Pharmaplan, the world’s leading engineering newcomer and make it clear to your colleagues what
and consultancy company focused entirely on the you are able to cope. The pharmaceutical field is new
pharma and biotech industries. to me. But busy as they are, most of my colleagues
find the time to teach me, and they also trust me.
Inés Aréizaga Esteva (Spain), 25 years old Even though it was a bit hard at first, | can feel over
Education: Chemical Engineer time that | am beginning to be taken seriously and

that my contribution is appreciated.

NNE Pharmaplan is the world’s leading engineering and consultancy company o
focused entirely on the pharma and biotech industries. We employ more than nne Dharmaplan
1500 people worldwide and offer global reach and local knowledge along with

our all-encompassing list of services. nnepharmaplan.com

Download free books at BookBooN.com

89


http://bookboon.com/count/pdf/346355/89

